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Induction Heating of Flat Objects

E. Horoszko, Krakdéw, Polen

Contents: It is a usual procedure in industry for various machine elements like metal plates of different thickness to be heated
inductively with a frequency within the range 50 Hz to 3 MHz. The paper discusses the problem of finding the best method in
this respect with the optimum heating parameters.

Three different induction heating systems of plates are analysed: unilateral and bilateral heating with compatible and inverse
currents. The discussion, calculation and conclusions given in the paper can be also applied in reference to plates of an irregular
shape.

Ubersicht: Es ist in der Industrie tiblich verschiedene Maschinenelemente wie Metallplatten von unterschiedlicher Dicke mit
Frequenzen zwischen 50 Hz und 3 MHz induktiv zu erwirmen. Fiir diese Zwecke wird in diesem Aufsatz das Optimierungs-
problem von Erwdrmungsparametern betrachtet. Es werden drei verschiedene Induktionserwirmungssysteme von Platten
analysiert: ein- und zweiseitige Erwdrmung durch gleich- und entgegengerichtete Stréme. Die angegebenen Betrachtungen,

Berechnungen und Ergebnisse konnen auch auf die Induktionserwdrmung von zylindrischen Platten angewendet werden.

1. Introduction

Inductive heating very often means heating flat
objects, e.g. metal plates of different thickness. These
are usually elements which are heated with a fre-
quency within the range 50 Hz to 3 MHz, either
thoroughly with respect to the plastic working or to
the heat treatment of the metal element, or are
heated on the surface only for the purpose of harde-
ning.

Flat metal objects as well as those of a cylindrical
shape which are also frequently used are the typical
machine elements used in induction heating. All the
other possible shapes of objects can be nearly always
reduced in theoretical and technical consideration
to a flat or a cylindrical shape.

The elements in question are mostly objects of
mass industrial production for which the problem
of heat treatment and induction heating must be
solved in the best possible way, i.e. with the optimum
heating parameters with regard to the thermal pro-
cess itself, or because of economic and technical
aspects of the heating process, e.g. high heating rate,
minimum electric énergy consumption, required tem-
perature distribution, etc.

It is common practice in industry to heat flat
objects unilaterally or bilaterally by induction i.e. by
means of an appropriately shaped heating inductor
which is applied to one side of the heated object, or
by means of two inductors applied to both sides of it.
The inductors are the source of an electromagnetic
wave which penetrates the surface of the heated

object, supplying the electric energy converted into
heat.

The electromagnetic field which has been generated
in this way is characterized by the three vectors: the
intensity of the magnetic field H, of the electric
field E, and by the Poynting vector 8. The correspond-
ing induction system with the inductor w and with
the three vectors marked on the surface of a flat
object $ of a thickness d are shown schematically in
Fig. 1.

In the case shown in Fig. 1a the object is heated
unilaterally, while in the other two cases the object
is heated bilaterally by means of two inductors; in
the case 1b the induced currents are compatible
with a regard to their direction and phase, e.g. both
inductors w are supplied paralelly or in series from
the same source; in case 1c the induced currents
are inversed, e.g. both inductors are supplied se-
parately from two different sources. All the three
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Fig. 1. Induction heating system of plates: a) unilateral

heating, b) bilateral heating with compatible currents, c) bila-
teral heating with inverse currents
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vectors of the generated field are perpendicular to
each other in all the three induction systerns shown in
Fig. 1. We assume idealized operation conditions for
these systems, i.e. that the inductors are fed with
sinusoidal currents within a frequency range used
in inductive heating, and the physical properties
of the material of the object, i.e. its permeability
p = pop, and conductivity y are constant and in-
dependent of the heating temperature and of the
intensity of the magnetic field.

Tt is assumed further on that both the heated plate
and the inductors extend infinitely along and across,
and for our purposes we shall limit our considerations
to tome section of such an inductive system. In this
case we shall have to do with a homogeneous plane
wave falling on one or on both sides of the metal
plate, the vectors E,, H,, S, on its surface being
identical at each point. The changes of the field occur
only inside the plate, in its thickness 4. Thus the
field parameters, e.g. at an arbitrary point A4 at
a distance x from the surface will be exclusively the
function of the distance x.

Of the three induction systems shown in Fig. 1
the system 1a iltustrating a unilateral heating of the
plate may be assumed as the basic one, since the
systems 1b and 1¢ may be regarded as a superposi-
tion of two systems of the type 1a on both sides of the
plate.

Though in the literature [1—3] cases of propagat-
ion of an electromagnetic plane wave have been
discussed theoretically they have been treated only
partially. If we discuss this problem on-a broader
basis, however, as a problem of induction heating
of flat objects we may reach conclusions and results,
which are of interest for practical application. Such
an approach to this problem is the subject of the
present paper.

2. Unilateral heating of a plate

The characteristics of a heated flat metal plate of
any thickness may be known by determining the
distribution of the electromagnetic field inside it,
ie. the intensity of the electric and the magnetic
fields, the current density and the power density
W/cm3 in the plate. For this purpose it is best to
start with Helmholtz general differential equation
which determines the field intensity H according to
the distance x, namely:

02 H

axz—kZZOJ (1)
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where at the depth penetration:

2
£ 1/ oY Pt

there.s the argument:

b= ot V2j unour‘y _

g 2
A general solution of Eq. (1) is the binomial of the
exponential functions:

H = A exp (—kx) — B exp (kx) (2)

whereas the density of the electric field is determined
on the basis of Maxwell’s law:

Ez%rotH

by differentiating Eq. (2) and considering that in the
system of the orthogonal coordinates we have:
H
rot H = — el
ox
We obtain then a formula analogical to (2), deter-
mining the intensity of the electric field:

E = %[A exp (—kx) — B exp (kx)]. (3)

Both formulae: (2) and (3) determine the distri-
bution of the electromagnetic field inside the plate
depending on its thickness x. On the surface of the
plate where the wave is entering, we have the
assumed field intensity H, and E, on the other,
outer surface of the plate we shall already have
different intensity values: let’s denote them by H,
and E,. This intensity can be also determined on
the basis of Maxwell's laws and on the assumption
that the space behind the plate extends infinitely
and does not conduct the current, having a dielectric
constant ¢ = g, - &, namely:

oE 8H
rot H; = g8, ?tl s rot By = — oty a_tl . (4)

Assuming, as before, that both Hy and E; are sinus-
oidal, the first from the above equations (4) will take
the following form:

rot Hy = jwee By (5)

After appropriate transformations of the second
equation (4) we obtain successively:

1

1 s
. rot rot Hy = — poi; e ot oy 5
02H. .
6x21 = JPwegerpopt Hy -
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Assuming in the considered space behind the plate
g =1 and u, = 1, and putting

Rl = j2osu,
we obtain the final differential equation

0°H,

ox®

— EBH,=o.

A general solution of this equation is the relation:
H, = C exp (—kx) — D exp (k%) . (6)

The second member of the above equation (6) re-
presents a reflected wave, and considering that such
a wave doesn’t exist as the space behind the plate
extends into infinity, there must be D = o. Hence
the last equation (5) assumes the form

H, = C exp (—ky) . )

The intensity of the electric field behind the plate
may be determined in the basis of Eq. (5):

1

k
E, = rot H, = EZ;—OC exp (—kx) . (8)

joe,

In the obtained relations (2), (3) and (%), (8) which
determine the intensity of the field inside the plate
and behind it, there appear the integration constants
A, B, C which can be determined from the boundary
conditions of the considered inductive system, na-
mely:

fory = o H=H,

forx=d Hy=H, and E,=E,

Putting these conditions into the general relations (2)
(3) and (7) (8) we obtain a set of three equations which
allow to determine the looked for integration con-
stants:

Hy=A4 -+ B
A exp (—kd) + Bexp (kd) = Cexp (—hd) (9)

L3 Q !
” [4 exp (—kd) — Bexp (kd)] = EC exp (—kyd)

Dividing the last two equations the one by an-
other we obtain the following relation:

A exp (—kd) + B exp (kd) _ Jwke
A exp (—kd) — Bexp (kd) vk

(10)

in which the right hand side practically approximates
Zero.
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In.induction heating, within the range of the app-
lied frequencies, we have to do with various metals in
various heating states. Thus we have, e.g.:

for copper at temp. 2o °C and 50 Hz
o=175-10"80Qcm; g ~ 0.gcm

for molten copper at 50 Hz
o~ 251080 cm; g~ 4cm

for molten cast-iron at 50 Hz
0~ 140.10° Q em; g &~ g cm

for wrought steel at temp. 20 °C and at 1 MHz
0~ 41078 Qcm; g~ 0.003 cm .

Thus the value of relation (10) within the range of
the practically used metals is

e Y
= (1 +17) (52 3550) -

Consequently we may write
A exp (—kd) = — B exp (kd)

B = — 4 exp (—2kd)

10710 ~ 0.

By means of the first from the group of the three
equations (g) we may finally determine the constants
A and B, namely

Hy = A[1 — exp (—2kd)] ,

1
4 = H, 1 — exp (—2kd)

(11)
exp (—2kd)
B=—HyT— exp (—2kd)

From the second equation of that group (g) it
follows that

Hy=Cexp{—kd)=o0.

Hence the intensity of the magnetic field behind the
metal plate equals zero. Thus, for the range of
industrial frequencies and kinds of metals practically
used in induction heating the electromagnetic wave
does not penetrate the plate which behaves similarly
to a magnetic screen.

Basing on the calculated integration constants (11)
it is possible to determine the field parameters inside
the plate, namely

exp (—Ax) — exp (—2kd) exp (kx) .
1 — exp (—2k4d) -
exp [k(d — %)] — exp [— k(@ — )]
exp (kd) — exp (—kd)

H=H,

:HO
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and replacing the exponential functions by the hyper-
bolic ones we obtain the final relation for the inten-
sity of the magnetic field inside the plate

sinh {#(@d — x)]

H=H,—5 (kd) (12)

whereas the intensity of the electric field may be
determined by means of the first Maxwell equation

k cosh [k(d — x)]

E=Hy "~ (13)
as well as the current density inside the plate:

. cosh [A(d — #)]

iy = Ho "L 2T (14)

sinh (kd)

The fourth quantity characterizing the energetic
properties of the field is the volume density of the
heating power W/cm? inside the plate, which can be
determined from Joule's law, using Eq. (14):

cosh? [k(d — #)]

sinh? (kd) (15)

1 1

b= o= o (Hyp?

The above determined four parameters charac-

terize sufficiently the field distribution inside the

plate, but the most convenient way to find out its

properties is to represent it in the form of a graph.

For this purpose the above field parameters must be

defined as absolute quantities, and then we obtain
successively

/ 2(d — #)
cosh p — COS P
!H| = HO 2d 2d ’ (16)
cosh — — cos —
g 4

2(d — %)

2(d — x) 2(d — x)
V; cosh -+ cos »
Bl =25 H, +d o, » o (17)
cosh — — cos —
_ qd —
coshz( ?) -+ cosz( #)
=2q 4 8
‘” - g 0 2d 2d ’ (1 )
cosh — — cos —
g
2(d — %) 2(d — %)
. (H 2cosh 2 - cos 2
, 0
Il = 7(;) i Py (19)

cosh — — cos —
4 4

To represent graphically the propagation of the
electromagnetic wave in an inductively heated plate
the best way is to consider the ratio of the field
intensity, current and power density inside the plate
to the field intensity, current and power density

E. Horoszko: Induction Heating of Flat Objects

occurring on its surface, i.e. H/H, and E[E,, ¢[7, and
plps- Determining thus the field parameters for
% = 0 by means of relations (16) to (19) we obtain

2(d — x) 2(d — %)
\H| cosh — COS
ﬂ - 24 2d ’ (20)
cosh — — cos —
4 4
d — -
B | cosh ( #) + cos 2 ?)
T T ’ (21)
E 2
[l ol cosh — + cos —
d — d —
cosh 2 gl -+ cos 2 ?)
P »
[ ol 2d

2d
cosh — + cos —
4 8

We shall represent graphically the particular values
of the above relations (20), (21), (22) depending on
x/d for plates of different thickness, determined by
the ratio djg as well as for various metals and fre-
quencies used practically in industry. They have
been calculated for the whole range x/d = 0 - 1.0
and for the arguments corresponding to practical
applications in industry, thus for d/g = 0.5 .- 10 to
50. They have been put together in Table 1.

On the basis of the data from Table 1 there have
been prepared diagrams shown in Fig. 2.

The diagrams show the propagation of an electro-
magnetic field inside the plates. Their character is in
general known from the literature, however the
practical conclusions which can be drawn from them
may be of interest for induction heating of flat ob-
jects.

The greatest field parameters occur on the sur-
face of a plate where the wave is falling, and inside
the plate they become smaller reaching minimum
values on the reverse surface of the plate. Thus the
field distribution inside the plate is not uniform, the
greatest intensity of the magnetic field H, being
on the surface, and on the other side H = 0. With
the small ratios d/g < 1 the intensity decreases nearly
linearly, with greater ratios the distribution of H
resembles an exponential function.

The current density ¢ and at the same time the
intensity of the electrical field E in the plate are not
distributed uniformly, either. When the plates are
not very thick, with dfg < 1, the difference in uni-
formity is not too great, and then the current density
on the opposite surface of the plate diminishes by
ca. 23% of the current density on the entrance sur-
face. However, when the plate is somewhat thicker,

Avch. f. Elektrotechn. Bd. 57, H. 3 (1975)
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Table 1. Electromagnetic field parameters in a plate heated unilaterally

x d
d 1
0.5 1.0 2.0 3.0 6.0 10.0 50
H 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ﬁ; 0.25 0.75 0.73 0.63 0.48 Q.22 0.08 0.0
0.5 0.50 0.49 0.39 0.23 0.05 0.0 0.0
0.75 0.25 0.24 0.19 0.11 0.01 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E i 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7;) - ZO_ 0.25 0.99 0.85 0.58 0.47 0.22 o.08 0.0
0.5 0.98 0.79 0.35 0.25 0.05 0.0 0.0
0.75 0.98 0.78 0.28 0.10 0.01 0.0 0.0
1.0 0.98 0.77 0.27 0.09 0.01 0.0 0.0
¥4 0.0 1.0 1.0 1.0 1.0 1.0 1.0
P‘o- 0.25 0.98 0.72 0.34 0.22 0.05 0.01 0.0
0.5 0.96 0.62 0.13 0.05 0.0 0.0 0.0
0.75 0.96 0.60 0.08 0.01 0.0 0.0 G.0
1.0 0.96 0.60 0.08 0.01 0.0 0.0 0.0
e.g. d/g = 2, then the loss of current density amounts very unevenly, and thus, for example, with d/g = 2
g y y Y p g

to ca. 73%.

The distribution of power density inside a plate
shown in Fig. 2¢ is of greater interest for induction
heating.

When the plates are not thick, with 4/g < 1,
induction heating is fairly uniform. With djg = 1,
the loss of power density equals 409,. This condition
will be of interest for a thorough induction heating
of metal plates. With plates of greater thickness
however, the generated Joule's heat is distributed

the power density on the reverse side of the plate
decreases by 929, of the power density on the ent-
rance surface. With still thicker plates, when d/g > 3
the production of heat diminishes entirely already at
xjd ~ 0.5.

From the practical point of view we are mostly
interested in the total heating power formed inside
the plate which may be determined by means of
relation (15) and (19). We shall determine it for
a unit surface 1 c¢m? of the plate cross section in
W/em?.
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Fig. 2. Distribution of field parameters inside a plate heated unilaterally: a) magnetic field intensity,
b} electrical field intensity, ¢} power density
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a . a
1 cosh? [k(d — )]
_ —_ 2 —
P= | pdx = (Hpk) sinbe (g X =
o d a
2{d — x) 2(d — %)
H\2 cosh -+ co
= %(f) ¥
cosh — — cos —
2 2d
H?, sinh — + sin —g~
Ty 2 ad (23)

cosh — — cos —
4

It can be seen from the above relation (23) that the
total power of the plate depends not only on the
electrical parameters of the plate and the field inten-
sity H, but also on the thickness of the plate, or
rather on the ratio dJg, which is taken into consi-
deration by the coefficient

2d 2d
sinh — - sin—
8 g

2d 2d
cosh — — cos —
4 g

This coefficient is the function of the ratio d/g and
when the plate thickness d increases infinitely rela-
tive to the penetration depth g, it assumes the value
A =1, and then the heating power in the plate is
defined by the formula

Hj

287
From the point of view of the heating power pro-
duced in the plate we are interested in the change
of the function A = f(d/g), which is represented by the
diagram in Fig. 3 made on the basis of Table 2.
From the diagram shown in Fig. 3 it follows that
the greatest heating powers are formed inside thin
plates, when their thickness is dfg < 1, 2. Starting
with the ratio d/g = 1.2 the value of the function is
% =1, with only small deviations, and then the
heating power also retains approximately the value
defined by relation (24). With dfg = =/2 function 2
reaches its minimum, and then the heating power also
reaches its minimum value, equal to 929, of the
power defined by relation (24). With the plate thick-

(24)
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Fig. 3. Diagramm of the function 4 = f(d/g) of a plate heated
unilaterally

ness increasing further on, the heating power remains
approximately the same, its value being defined by
formula (24). Then the function 4 attains its minimum
and maximum values, which, however, are close to 1,
which from the practical point of view can be neglec-
ted. Thus, for example, with d/g == we have
A = 1.004.

The thickness of a plate may theoretically increase
up to d = co, and then we have an extreme case of
unilateral heating of a very thick plate. The distri-
bution of the electromagnetic field in such plates
can be determined by means of simple mathematical
formulae. Starting with formulae (12) and putting
in it d = co we obtain after mathematical trans-
formations the familiar relation which determines the
magnetic field intensity in a thick plate:

H = Hyexp ( —hz) (25)

and having taken into consideration the absolute
quantities we have
X
i = Hyexp(— 2. (6)
Using the same method it is possible to determine
the intensity of the electrical field and the current
density starting with the formulae (13) and (14):
(27)

k
E = 7]{0 exp (—kx) , 1 = kH,exp (—kx)

d
Table 2. Function 4 = § (-) of a plate heated unilaterally
g

0.3 0.5 0.75

m | &
°
o
o
o
N

1.0 1.57 2.0 3.14 5.0 10.0

2.01 1.38

~

o 10.00 5.00 3.34

1.09 0.92 0.95 1.00 1.00 1.00
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and in terms of absolute quantities we have:
|E} = ViHO exp (— i) ,
14 4
(28)
A x
=" e (= ).

Whereas the power density calculated by means of
Joule’s law and current density (28) is

1 1 [(Hy\2 2%
=t {8 ool

while the total heating power produced in a plate of
a thickness d = oo, in its cross section 1 cm? is

(29)

P:fpclx:;g—y~ (30)

The propagation of an electromagnetic field of
a thick plate heated unilaterally by induction can be
obtained by relating the changes of its parameters to
the parameters occurring on the entrance surface of
the plate, i.e.

_H_. — £ — L — e—"/g and £ — e_zx/g
H, E, % %o
depending on x/g.

This has been shown below, in Fig. 4 basing on the
values of function e~ *%¢ and e~?*¢, included in
Table 3.

Table 3. The changes of the values e—#/8 and e—2#/¢

xlg 0.0 0.5 1.0 2.0 3.0 5.0
e—*Ig 1.0 0.61 0.37 0.14  0.05 0.01
e—2%lg 1.0 0.37 0.14 0.02 0.0 0.0
10
08

06 \
E H/Hy= /6,

04

02 }

~L_

0 1 2 3 4 5 b 7

) 7/ P——

Fig. 4. Field parameters in a thick plate
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When interpreting the results shown in Fig. 4
we can state that the field density and the current
density practically disappear already at a depth
% == 5¢, whereas the power density p disappears at
a depth x = 3g. At the depth x = 3g the current
density decreases to 59 of current density occurring
on the surface, and the power density diminishes to
$ = 0. On that basis we can reach the practical
conclusion that a flat metal plate of a thickness
d = 3g, heated inductively by a plane electro-
magnetic wave may be regarded as a thick plate in
which the wave propagation may be analyzed ac-
cording to formulae (27) -+ (30). Flat, thinner plates
of a thickness d < 3g should be dealt with according
to more complicated mathematical formulae (10) to
(22).

3. Bilateral heating of a plate

A flat plate may be heated inductively bilaterally
as illustrated by two examples shown in Figs. 1b
and 1c, i.e. by means of currents induced on both
sides of a plate and directed compatibly, or inversed.
Let us first consider a case in which an arbitrary
flat plate is heated bilaterally as shown in Fig. 1b.
Then, according to the assumptions the intensities
of the electric field E, and E, occurring on both sides
of the plate are equal regarding their moduli, phase
and direction. However, their magnetic field densities
H. and H, have opposite directions and their moduli
H, are equal as well.

Inside the plate the induced currents will flow
in one and the same direction corresponding to the
intensity of the electric field. At an arbitrary point 4,
at a distance » from the left surface of the plate there
will appear the electric field intensities E’ and E’'
and the magnetic field intensities H’ and H”, the
resultant field parameters being

H:H/_Hll,
E=E +E".

Both parameters given above may be determined on
the basis of the already derived relations (12) and
(13):

sinh {(d — #)]

H' = Hy—5 rd)
o sinh (kx)
H" = H, o5 (kd) '

Hence the magnetic field intensity at a point 4 is

sinh [£(d — x)] — sinh (k%)

H = H, sinh (kd)
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and after mathematical transformations we obtain

finally:
d
sinh [k (7 — x)]
Ho *—T .

In the same way we can calculate the intensity
of the electric field at a point A:

)

H = (31)

k
14 .
sinh (k *)
2
and the current density
d
cosh {k <? — x)]
Q= Hp—t (33)

a
sinh (k ﬁ)
2

The energy parameter of the field, i.e. the density
of the heating power inside the plate is found from

Joule’s law:
d
. . cosh? {k (—; — x)]
75:_,1'2 :-(Hk)z R S W

2 2 0 d
v 4 sinh? (k ;)

The above relations (31) to (34) determine suffi-
ciently the propagation of an electromagnetic wave
in a metal plate heated bilaterally by induction.
However, the distribution of this field in a plate can
be best represented similarly as before, i. e. by means
of a graph. For this purpose the most convenient
method is to relate the field parameters in the plate
to the parameters on its surfaces, i.e. H/H,, E|E,,
i[ty, and p/p,.

Calculating thus the field parameters for x = o
and starting from formulae (31} to (34) we obtain

= 3

)
<

(34)
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The values of these relations can be represented
graphically at different depths of the plate, depending
on x/d, and for different thickness of the plate deter-
mined by the ratio d/g = 0.5 50, for different
metals and frequencies used in industry. For this
purpose we must replace the complex functions by
functions expressed in absolute quantities, and then
we have:

d — 2x d — 2x
cosh — CO8
= / e (35)
]H 1 cosh — — Cos vd—
4
b d — 2% n d — 2x
cos cos
B (36)
[EOI ‘%l cosh h + cos .
b d — 2x n d — 2x%
cos cos
vd
™ (37)

d
cosh — - cos —
g g

On the basis of detailed numerical values calculated
for the particular relations (35), (36) and (37) the
field parameters of a plate heated bilaterally are
shown in Fig. 5.

As it is found, the parameters in each half of the
plate are identical with those of a plate heated uni-
laterally, which are shown in Fig. 3.

The greatest field parameters occur on both outer
surfaces of the plate, and inside it they decrease to
aminimum. Thus, e.g. inside the plate H = o, and the
electric field E and power density p show the smallest
values. The irregularity of the field distribution is
thus as large as in case of a plate heated unilaterally,
and all the conclusions referring to the wave pro-
pagation, given before, can be applied here, as well.

The total heating power formed inside a plate
heated bilaterally is

d d
d
. cosh? [k (; - x)J
P= | pdx=_ (Hp)? = dx =
'Y 7 sinh? (k ‘)
o o 2
d
a4 — 2x d — 2%
L (Hy\? cosh -+ cos
rAE cosh — — cos —
o g

d )
sinh ? -+ sin ?
cosh ? — COS —
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Fig. 5.

Similarly as before, this total heating power de-
pends either on the thickness of the plate or on the
ratio djg, this relation being expressed by the co-
efficient ‘

., a .
sinh — + sin —
g 4

4 a4 (39)

cosh — — cos —
4 g

)»:

This is the same relation that has already been
indicated by relation for a unilateral heating of
a plate, except that in formula (39} the independent
variable 4 is twice as large. On the basis of the graph
given before in Fig. 3 we may reach the following
practical conclusions concerning induction heating:

The greatest heating power in plates heated bi-
laterally with compatible currents is formed when
their thickness is d < 2.4g. In thicker plates, when
d = 2.4¢ the value of function 4 according to formula
(30) is 2 &~ 1, and the total heating power retains,
with only small deviations, the same value as for
a plate heated unilaterally, which is determined by
formula (24), independent of the plate thickness.

With the thickness 4 = = .g the total heating
power reaches its minimum, which amounts to 929,
of the maximum power, according to relation (z4).

What concerns the results of analysis of the field
parameters in a thick plate heated unilaterally and
shown in Fig. 4, we may also in this case maintain
that a metal plate of a thickness 4 = 6g, heated bi-
laterally, may be practically regarded as a thick
plate whose field propagation may be analysed ac-
cording to relations (27) to (30). The calculations for
thinner plates of a thickness 4 < 6g should be carried
out according to mathematical formulae (35) to (38).

Let us consider now a case of a flat plate heated
bilaterally by inverse currents of equal moduli which
is illustrated by the induction. system shown in
Fig. 1¢. With the assumed directions of the Poynting
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Field parameters. in a plate heated bilaterally with compatible currents

vectors S, and S, of equal values, falling on both
sides of the plate, and with inversed and equal vec-
tors E, and E| the vectors of the magnetic field in-
tensity have the same direction and their moduli are
equal.

At an arbitrary point 4 of a plate there appear the
resultant field intensities, i.e.

H:Hl+H/’
E=E —E".

Making use of the already obtained relations (12)
and (13) which determine the field intensity compo-
nents, and after mathematical transformations, we
obtain:

H = H, T (40)
cosh 2 —
2
a
sinh [k (—; — x)]
EeHy— ()
Y
. cosh & Py

the current and the power densities being as follows:

bt

i — Hy —=, (42)
cosh 2 —
2
a
L sinh?2 [k (—2— — xﬂ
b= (HpP—— = (43)
cosh? k& -

Calculating in the same way as before the field
parameters of a plate in absolute quantities and
relating them to parameters occurring on the sur-
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Fig. 6. Field parameters in a plate heated bilaterally by inverse currents

face of a plate, we have:

h d — 2% . d — 2x
cos cos
|H| g (
|H0I - d d 4 44)
cosh — 4 cos —
4 4
a— 2z d— 2%
2] il cosh — cos
i
2 Fi| cosh — — cos —
g 4
d — 2x ad — 2x
1] cosh 2 — cos 2
i 3 P (46)
cosh — — cos Tg—

When comparing the first two of the above rela-

tions (44) and (43) with relations (35) and (36) we

can see that the intensity distribution of the magnetic
field in a plate heated bilaterally by means of inverse
currents is identical with the intensity distribution
of the electrical field in a plate heated by compatible
currents. The same refers to the electrical field inten-
sity. On the basis of this statement it is easy to re-
present both these cases graphically, as shown in
Fig. 6.

Table 4. Power density in a plate by inverse currents

xld dfg

1.0 20 40 6.0 100 200

P/po 0.0 1.0 10 1.0 1.0 1.0 1.0
- o.10 0.64 0.62 048 o0.30 0.14 0.02

0.25 0.25 0.24 0.15 0.06 0.01 0.0

0.5 © 0.0 0.0 0.0 0.0 0.0 0.0

0.75 0.25 0.2 0.15 0.06 0.01 0.0

0.90 0.64 0.62 0.48 0.30 0.14 0.02

1.0 1.0 1.0 1.0 1.0 1.0 1.0

The power density, however, runs differently in
the plate, and in order to represent it graphically in
Fig. 6 we have made up Table 4 containing its parti-
cular values.

It follows from the above diagrams that the field
distribution in a plate heated bilaterally by inverse
currents is more uneven than the field in a plate
heated bilaterally as well, but by compatible currents.
This refers in particular to the current and power
densities in the plate. Thus, e. g. in thick plates both
these densities disappear, i. e. both 7 = o, as well as
p == 0 if d > bg, even in the fairly wide middle part
of the plate. Considering this fact as well as taking
into account the thorough heating of the plate it is
the most disadvantageous method of induction
heating of flat metal objects.

From the point of view of utility the most impor-
tant quantity is the total heating power of the plate
which is defined as follows:

4 4
d — 2% d — 2%
7 \a cosh 2 — cos P
_ 1 0
P = de—T(g> a d dx=
cosh — - cos —
o o g
N a
o sin -—-s1ng
‘—g}j d N (47)

This power depends also on the plate thickness d,
and this fact is indicated in formula (47) by the
coefficient

. d d
sinh — — sin —
g

p=—tt (48)

d
cosh — 4 cos —
g g
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Table 5. Function A of a plate heated bilaterally by inverse currents

dlg o 0.5

5.0 27 8 37 10 47

Y [ 0.16 082 1.09

0.02

1.01 0.99 1.00 1.00 1.00 1.00

which constitutes the function 4 = f(d/g) which chan-
ges its value within the range from A == 0 to 1 = 1,
while the thickness of the plate changes within the
limits d = o to 4 = oco. This function is represented
by a graph Fig. 7 drawn on the basis of Table 5.

This function assumes changing values of ; at
dlg < 2.4 we have 1 =<1, whereas at dfg> 2.4
A & 1, reaching its maximum 4 = 1.09 at dj/g = .
If the thickness of the plate increases to d = oo, then
the total heating power becomes stable, and practi-
cally no longer depends on the thickness of the plate.
It is expressed by the following formula:

H3
=
12 r
—
" P ]
08
1 " L= la/)
L/
0 ‘ —
o]
| |
il 1 2 3 4 5 ] 7 8 ] 10

alg——=

Fig. 7. Graph of the function 1 = f(d/g) of a plate heated
bilaterally by inverse currents

Reaching practical conclusions from function 4 and
from relation (47) we can state that flat objects of a
thickness 4 = 2,4 g can be advantageously heated by
inverse currents. With lesser thickness of plates the
total heating power decreases rapidly since the in-
verse currents annihilate each other. At a thickness
d = mg the heating power reaches its maximum value
which is only by g9, greater than the heating power
of a very thick plate, for which 4 = 1.

This kind of bilateral induction heating of flat
plates by means of inverse currents could be recom-
mended for surface heating, e. g. for the purpose of
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bardening thick plates, in which, on account of the
annihilation process of inverse currents the heating
of both layers shows greater “contrast’’ than this
is the case in plates heated by compatible currents.
When heating is being done by means of inverse
currents both the heated “layers’ of the plate become
more distinguished by heat production from the
rest, i. e. from the deeper layers of the plate.

Summary

In the above discussion we have taken into consi-
deration flat objects only, heated in three different
ways. Yet it is possible to prove that the reasoning,
calculations and conclusions given above can be
applied to plates of a cylindrical shape, the outer
diameter D of which satisfies the following condition:

D —
ZV2

g
Then, admittedly, we shall have to deal with a
cylindrical propagation of an electromagnetic wave,
but it can be replaced by a plane wave at such great
outer diameters of the cylinders. The calculation
errors made in this case are practically negligible.
Thus the calculations and conclusions given above

attain greater importance for practical application
in industry.

>16.
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